

DEPARTMENT OF HEALTH AND HUMAN SERVICES
ENTERPRISE PERFORMANCE LIFE CYCLE FRAMEWORK

PPPRRRAAACCCTTTIIICCCEEESSS GGGUUUIIIDDDEEE

<OIDV Logo>

RELEASE STRATEGY
Issue Date: <mm/dd/yyyy>

Revision Date: <mm/dd/yyyy>

<OPDIV> Release Strategy (V1.0) Page 1 of 4
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

Document Purpose
This Practices Guide is a brief document that provides an overview describing the best practices,
activities, attributes, and related templates, tools, information, and key terminology of industry-leading
project management practices and their accompanying project management templates related to the
Release Strategy.

Background

The Department of Health and Human Services (HHS) Enterprise Performance Life Cycle (EPLC) is a
framework to enhance Information Technology (IT) governance through rigorous application of sound
investment and project management principles, and industry best practices. The EPLC provides the
context for the governance process and describes interdependencies between its project management,
investment management, and capital planning components. The EPLC framework establishes an
environment in which HHS IT investments and projects consistently achieve successful outcomes that
align with Department and Operating Division goals and objectives.

Practice Overview
System development decisions often have deep strategic, business, and cost implications. If not planned
correctly, ramifications of incorrect decisions may be felt long after the decisions have been made. On the
periphery of system development one very important aspect addressing this issue may often be under
emphasized or overlooked all together. This is the implementation, execution, and management of an
effective software release strategy. This becomes exponentially important when building a custom
application because of the many challenges facing development teams:

 Managing development activities

 Managing integration of new development into the existing application

 Managing application dependencies

 Managing new feature/function requests

 Managing compliance with departmental/federal regulations, mandates, and processes

 Managing security requirements (vulnerability assessment testing [VA])

To illustrate how complex a development environment can be, and how important an effective release
strategy is, consider the following example. A development team is building a custom application and
might be required to release a major new feature or function multiple times a year to meet the demand of
its clients. This environment is further complicated by the management of defects, issues, risks, change
requests, etc. resulting in the distribution of multiple minor patch or emergency releases. The team uses
an iterative approach to development and performs a test build at least once a day. Additionally, the
application may have dependencies and interdependencies on other applications. Managing software in
this type of environment is often done using a source control management software application, for
example (Microsoft’s Visual Source Safe [Visual Studio], IBM’s Rational Clear Case, Borland’s StarTeam,
CVS, etc).

Deciding to release an application is often a tradeoff between early release and deferred release. Each
alternative has its own sets of pros and cons that must be weighed against each other to determine
maximum value for stakeholders. For example, rushing delivery benefits stakeholders with earlier release.
However, this may require reducing functionality and may decrease overall quality. As a result, future
costs may rise in order to fix bugs and distribute patches. Deferring a release allows time for enhanced
functionality and improved quality. However, this approach may incur additional development cost and
may result in missed opportunities.

Release Strategy

HHS EPLC Practice Guide - <OPDIV> EPLC Release Strategy (v1.0) <MM/DD/YYYY>

<OPDIV> Release Strategy (V1.0) Page 2 of 4
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

It is sometimes difficult to accurately determine the most appropriate product release date, feature
functionality, associated development costs, quality concerns, etc are all challenges needing to be
considered. Proper development and implementation of a release strategy may alleviate some of these
and other challenges related to scope management, quality management, communications, risk
management, etc. A formal release strategy makes distributing software easier and more consistent for
the performing organization and also outlines how and when product will be made available to the client.
A release strategy may include information on topics such as:
Producing the software - Activities that outline how the product will be designed, developed, and built,
defining items such as

 Development approach (Iterative, waterfall, spiral, etc)

 Functionality defined for each planned release

 Operating systems supported

 Programming languages used

 Requirements around application hosting, security, etc
Testing the software - Activities that outline how the product will be tested, defining items such as:

 Quality measurements used (bug counts, performance, user feedback, etc)

 Quality requirements and acceptable tolerances

 Testing approach (automated, beta, sampling, etc)
Documentation - Activities that outline how the product will be documented, defining items such as:

 Product guides

 Release notes

 Training material
Packaging, distributing, and installing the software - Activities that outline how the product will be
packaged and distributed, defining items such as:

 Box package distribution approach

 Electronic distribution approaches

 CD distribution/copying authorities and guidelines
Migrating data
Hosting the software

 Requirements for internally facing systems regarding hardware, software, security, etc.

 Requirements for externally facing systems regarding hardware, software, security, etc.
Providing training to end-users

Release Management
Release management approaches may vary from organization to organization. However, regardless of
which approach is used a best practice approach to release management is comprised of activities that
effectively manage the planning, organization, development, testing, and implementation of new features
and functions, defects, change requests, etc. into the application being developed. Some of the stages
that a software release may go through as it works through the release process may include:

 Pre-Alpha - A pre-alpha release does not necessarily contain completed feature/function. This is
often an interim product build, prior to testing, often to validate a particular piece of work or that
development to this point hasn’t broken the build process.

 Alpha - An alpha release does not necessarily contain all completed features/functions but does
satisfy release requirements. An alpha release is often the first internal product build delivered to
the testing group. It is often a preliminary build that is only partially complete and typically contains
temporary code, comments, product breaks, etc.

 Beta - A beta release is the first product version released outside the performing organization for
the purposes of real-world testing. A beta release includes all features/functions but often still
contains known issues and bugs.

 Release Candidate - A release candidate contains all completed features/functions and is a
product version that has the potential to be a final product. A release is called code complete when
it is agreed that no additional “new” source code will be added to the release. However, there may
still be changes to fix defects.

 General Availability (Gold) - A general availability release is the final version of a particular product.
A gold release is stable and relatively bug-free with a quality exceeding the client’s expectations.

Release Numbering
Software release numbering may appear trivial but is critical to the overall success of any effective
release strategy. A typical example of a numbering and naming releases scheme is shown below. This

HHS EPLC Practice Guide - <OPDIV> EPLC Release Strategy (v1.0) <MM/DD/YYYY>

<OPDIV> Release Strategy (V1.0) Page 3 of 4
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

type of a software release management naming convention is flexible enough to handle most software
delivery situations and can be modified if needed to apply to almost any project.

Release decisions are ultimately affected by how much testing is needed to verify that both functional and
non-functional requirements have been correctly built into the system and quality, as defined by project
stakeholders, has been met. How much testing is needed depends on the level of difficulty to verify
requirements and quality (testing/verification). The optimal level is difficult, if not impossible, to find. In
practice, cost and time will constrain this activity to a level that the performing organization can tolerate.

Release Checklist
A release checklist is one approach that can help identify when a product is ready for release that can be
used to help the project team identify when the product is ready for release to the client. This type of
checklist also enables the project team to validate client requirements and expectations and can be used
as a communication vehicle to validate this for the client as well. The process for creating a release
checklist may include items such as:

 Product Defects – Quantify an amount of defects that the client finds acceptable. Obviously, the
optimal level of defects would be zero. However, in practice, achieving zero defects would be
extremely cost and time prohibitive. Constrained by cost and time, a reasonable level of quality
should be identified and agreed upon by stakeholders.

 Coding Errors – If errors in code are discovered resolve them before continuing development. The
cost of correcting errors increases exponentially as the project matures. For example, to correct a
requirement error in the operation stage could cost a multiple of 100-times or more than if that
same error was fixed earlier in the project’s life.

 Product Documentation – Documentation should be a reflection of the code. Clarity, completeness,
and consistency are better achieved if the individuals who developed the product also create the
documentation.

Release Roles
Some of the individuals involved in a typical release process may include:

 Software Architects are responsible for capturing and understand the physical execution
environment of the system and related issues.

 Designers are responsible for understand the distribution of processing and data in the system.

 System Managers are responsible for understanding the physical environment in which the system
executes.

 Project Manager is responsible for estimating costs and schedules and for monitoring and
controlling project activities.

 Configuration Manager is responsible for the assembly of product builds and releases and for
maintaining the organization of development units, history, and access to product files.

 Technical Control Board (TCB) or Change Control Board (CCB) is responsible to evaluate the
impact of the release on the operational environment.

The ultimate decision on determining if a product release is ready for distribution should be made based
on an objective analysis of factors such as:

 Completeness – Completion of milestones/deliverables that deliver functionality required by the
client.

 Performance – Product performance and server load is within acceptable margins defined in the
requirements gathering and design phases of the project.

 Defects – Defects have been reduced to a level acceptable by the client.

 Security – Compliance with Certification and Accreditation (C&A) requirements.

07.02.00.05.000

[Major Feature/Function/Release] [Maintenance Release]

[Patch Number] [Minor Feature/Function/Release]

[Build Number]

HHS EPLC Practice Guide - <OPDIV> EPLC Release Strategy (v1.0) <MM/DD/YYYY>

<OPDIV> Release Strategy (V1.0) Page 4 of 4
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

 Sign-off – Final sign-off by the appropriate stakeholders and/or authorizing individuals to confirm
that all product expectations have been met and that the product is officially approved for general
release. A sign-off checklist may include items such as:
o Annotate the correct release number as defined by an agreed upon standard
o Confirm legal, license, and copyright elements
o Remove any testing and debugging code
o Check that documentation is complete and up to date
o Ensure compliance with regulations and mandates.

Practice Best Practices

 Release Numbering - Use a standard for numbering and naming releases that is flexible enough
to handle the organizations delivery situations

 Checklist - Use of a release checklist can be used to help the project team identify when the
product is ready for release to the client

 Validate - Validate client requirements/expectations are built into the release. This is an activity
that should be performed throughout the entire project life cycle to avoid errors and rework

 Documentation - Documentation should be a reflection of the code.

 Software - Release management can become extremely complex almost always requiring a
source control management system application to control effectively.

 Assessment - Allow adequate time throughout the release cycle/schedule to perform any
necessary assessments and validations for the product to be certified for release.

 Compliance - Allow adequate time throughout the release cycle/schedule to perform any actions
required to comply with Federal and departmental regulations and mandates.

 Authority to Operate - After completing any assessments and compliance related items obtain
formal sign-off validating authorization to operate (ATO).

Practice Activities

 Stakeholders - Identify and communicate with application stakeholder.

 Plan Early - Plan enough time to comply with processes and regulations.

 Guidelines - Outline how and when the product will be available to the client. Include information
that defines development and testing processes, documentation, packaging, distribution,
installation, data migration, training, etc.

 Configuration Management - Define the organizations configuration management approach.

 Strategy - Define a release strategy for the organization which may include definitions for pre-
alpha, alpha, beta, candidate, and gold releases.

 Numbering - Define a release numbering approach that meets the needs of the organization and
product being developed.

 Source Control System - Product source code is often controlled using a source control
management system to assist in managing different version of product code (Microsoft’s Visual
Source Safe [Visual Studio], IBM’s Rational Clear Case, Borland’s StarTeam, CVS, etc).

 Checklist - Outline a release checklist to help identify when a product is ready for release.

